# Computer Science 294 Lecture 2 Notes 

Daniel Raban

January 19, 2023

## 1 Properties of Boolean Functions and BLR Linearity Testing

### 1.1 Recap Fourier identities for boolean functions

Last time, we proved the fundamental theorem of boolean functions.
Theorem 1.1 (Fundamental theorem of boolean functions). Every boolean function $f$ : $\{0,1\}^{n} \rightarrow\{0,1\}$ can be uniquely represented as a multilinear polynomial (over $\mathbb{R}$ )

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq\{1 \ldots, n\}} \widehat{f}(S) \prod_{i \in S} x_{i} .
$$

This is sometimes called the Fourier representation of the function, and $\widehat{f}(S)$ is the $S$-Fourier coefficient of $f$. We also discussed an inner product on boolean functions,

$$
\langle f, g\rangle=\mathbb{E}_{X \sim\{ \pm 1\}^{n}}[f(X) g(X)],
$$

and showed that the character functions $\chi_{S}(x)=\prod_{i \in S} x_{i}$ form an orthonormal basis of the vector space of functions $\{ \pm 1\}^{n} \rightarrow \mathbb{R}$. Finally, we showed the Plancerel, Parseval, ad Fourier inversion formulas:

$$
\langle f, g\rangle=\sum_{S} \widehat{f}(S) \widehat{g}(S), \quad\langle f, f\rangle \sum_{S} \widehat{f}(S)^{2}, \quad \widehat{f}(S)=\left\langle f, \chi_{S}\right\rangle .
$$

### 1.2 Expectation and variance formulas

Proposition 1.1.

$$
\mathbb{E}_{X \sim\{ \pm 1\}^{n}}[f(X)]=\widehat{f}(\varnothing) .
$$

Proof.

$$
\begin{aligned}
\mathbb{E}_{X \sim\{ \pm 1\}^{n}}[f(X) \cdot 1] & =\mathbb{E}_{X \sim\{ \pm 1\}^{n}}[f(X) \cdot \chi \varnothing] \\
& =\langle f, \chi \varnothing\rangle \\
& =\widehat{f}(\varnothing) .
\end{aligned}
$$

## Proposition 1.2.

$$
\operatorname{Var}(f(X))=\sum_{S \neq \varnothing} \widehat{f}(S)^{2}
$$

Proof.

$$
\begin{aligned}
\operatorname{Var}(f(X)) & =\mathbb{E}_{X}\left[f(X)^{2}\right]-\left(\mathbb{E}_{X}[f(X)]\right)^{2} \\
& =\langle f, f\rangle-\widehat{f}(\varnothing)^{2} \\
& =\sum_{S \neq \varnothing} \widehat{f}(S)^{2} .
\end{aligned}
$$

We also have

$$
\begin{aligned}
\widehat{f}(\{1\}) & =\mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[f(X) \cdot X_{1}\right] \\
& =\frac{1}{2} \mathbb{E}\left[f(X) \mid X_{1}=1\right]+\frac{1}{2} \mathbb{E}\left[-f(X) \mid X_{1}=-1\right] .
\end{aligned}
$$

### 1.3 Homomorphisms and convolutions

We will sometimes express $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ as $\tilde{f}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$; the correspondence here is igven by $(-1)^{b} \leftrightarrow b$ :

$$
\begin{aligned}
\widehat{f}\left(x_{1}, \ldots, x_{n}\right) & =f\left((-1)_{1}^{x}, \ldots,(-1)^{x_{n}}\right) \\
& =\sum_{S \subseteq[n]} \widehat{f}(S) \prod_{i \in S}(-1)^{x_{i}} \\
& =\sum_{S \subseteq[n]} \widehat{f}(S) \cdot(-1)^{\sum_{i \in S} x_{i}} .
\end{aligned}
$$

In this context, we will refer to $(-1)^{\sum_{i \in S} x_{i}}$ as $\chi_{S}$.
We call these functions characters because they are homomorphisms:

## Proposition 1.3.

$$
\chi_{S}(x+y)=\chi_{S}(x) \chi_{S}(y) .
$$

Proof.

$$
\begin{aligned}
\chi_{S}(x+y) & =(-1)^{\sum_{i \in S} x_{i}+y_{i}} \\
& =(-1)^{\sum_{i \in S} x_{i}}(-1)^{\sum_{i \in S} y_{i}} \\
& =\chi_{S}(x) \chi_{S}(y) .
\end{aligned}
$$

Definition 1.1. Let $f, g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$. The convolution of $f$ and $g$, is a function $f * g$ : $\mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ given by

$$
(f * g)(x)=\mathbb{E}_{Y \sim\{ \pm 1\}^{n}}[f(Y) g(x-Y)] .
$$

## Lemma 1.1.

$$
\widehat{f * g}(S)=\widehat{f}(S) \cdot \widehat{g}(S) .
$$

Proof.

$$
\begin{aligned}
\widehat{f * g}(S) & =\mathbb{E}_{X \sim \mathbb{F}_{2}^{n}}\left[f * g(X) \chi_{S}(X)\right] \\
& =\mathbb{E}_{X \sim \mathbb{F}_{2}^{n}}\left[\mathbb{E}_{Y \sim \mathbb{F}_{2}^{n}}[f(Y) g(X-Y)] \cdot \chi_{X}\right]
\end{aligned}
$$

Write $Z=X-Y$, so $X=Z+Y$. Since $X, Y$ are indpendent, so are $Z$ and $Y$.

$$
\begin{aligned}
& \left.=\mathbb{E}_{Y \sim \mathbb{F}_{2}^{n}, Z \sim \mathbb{F}_{2}^{n}}\left[f(Y) g(Z) \chi_{S}(Z+Y)\right]\right] \\
& \left.=\mathbb{E}_{Y \sim \mathbb{F}_{2}^{n}}\left[f(Y) \chi_{S}(Y)\right] \mathbb{E}_{Z \sim \mathbb{F}_{2}^{n}}\left[g(Z) \chi_{S}(Z)\right]\right] \\
& =\widehat{f}(X) \cdot \widehat{g}(S) .
\end{aligned}
$$

The reverse is true, as well, but we will not give the proof.
Proposition 1.4.

$$
\widehat{f \cdot g}(S)=\sum_{T} \widehat{f}(T) \cdot \widehat{g}(S \oplus T)
$$

### 1.4 BLR Testing

We want to check if $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is linear.
Definition 1.2. $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}$ is linear if for all $x, y$,

$$
f(x)+g(y)=f(x+y) .
$$

Equivalently, there exists an $a \in \mathbb{F}_{2}^{n}$ such that for all $x$,

$$
f(x)=\sum_{i=1}^{n} a_{i} x_{i} \quad(\bmod 2) .
$$

If we take $a=\left(a_{1}, \ldots, a_{n}\right)$, then $a_{i}=f\left(e_{i}\right)$, where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ is the $i$-th standard basis vector. You can show equivalence by induction.

Today, we are interested in showing that robust versions of these two conditions are equivalent:
(1') For most pairs $x, y, f(x)+f(y)=f(x+y)$.
(2') There exists an $a \in \mathbb{F}_{2}^{n}$ such that for most $x \in \mathbb{F}_{2}^{n}, f(x)=\sum_{i=1}^{n} a_{i} x_{i}(\bmod 2)$.
We can restate ( $2^{\prime}$ ) as the existence of $S \subseteq[n]$ such that for most $x, f(x)=\sum_{i \in S} x_{i}$.

Proposition 1.5. Suppose there exists an $S$ such that $\mathbb{P}_{X \sim \mathbb{F}_{2}^{n}}\left[f(X)-\sum_{i \in S} X_{i}\right] \geq 1$. Then

$$
\mathbb{P}_{X, Y}(f(X+Y)=f(X)=f(Y)) \geq 1-3 \varepsilon
$$

Proof. Denote $A=\left\{x \in \mathbb{F}_{2}^{n}: f(x)=\sum_{i \in S} x_{i}\right\}$. If both $x, y \in A$, then $f(x+y)=$ $f(x)+f(y)$. So

$$
\begin{aligned}
\mathbb{P}_{X, Y}(f(X+Y) \neq f(X)+f(Y)) & \leq \mathbb{P}_{X, Y} \mathbb{P}(X+Y \notin A, X \notin A, Y \notin A) \\
& \leq \mathbb{P}(X+Y \notin A)+\mathbb{P}(X \notin A)+\mathbb{P}(Y \notin A) \\
& \leq 3 \varepsilon .
\end{aligned}
$$

From the perspective of property testing, we want to think of $f$ as a black box; we don't know what is inside, but we can test the value of $f$ on inputs we give it. How can we determine if $f$ is linear? To know for certain, we would need to check every single input. Let us relax our condition.

Suppose either

1. $f$ is linear
2. $f$ is $\varepsilon$ far from being linear, i.e. for all linear functions $g$,

$$
\mathbb{P}_{X \sim \mathbb{F}_{2}^{n}}(f(X) \neq g(X)) \geq \varepsilon .
$$

Here, we think of $\mathbb{P}_{X \sim \mathbb{F}_{2}^{n}}(f(X) \neq g(X))$ as a notion of distance (this is the Hamming distance between $f, g$ ).

BLR proposed the following test:

1. Choose $X, Y \sim \mathbb{F}_{2}^{n}$ uniformly at random and independently.
2. Query $f$ on $X, Y, X+Y$.
3. Accept if and only if $f(X)+f(Y)=f(X+Y)$.

If $f$ is linear, then BLR accepts with probability 1 . If $f$ is $\varepsilon$-far from being linear, we want to show that $\mathbb{P}$ (BLR accepts) $<1-\varepsilon$. We will prove the contrapositive.

Theorem 1.2. Suppose $\mathbb{P}(B L R$ accepts $) \geq 1-\varepsilon$. Then there exists an $S$ such that $\mathbb{P}\left(f(X)=\sum_{i \in S} X_{i}\right) \geq 1-\varepsilon$.

Proof. Given $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$, let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ be $F(x)=(-1)^{f(x)}$. Then

$$
\begin{aligned}
1-\varepsilon & \leq \mathbb{P}(\text { BLR accepts }) \\
& =\mathbb{P}_{X, Y}(f(X)+f(Y)=f(X+Y)) \\
& =\mathbb{P}_{X, Y}(F(X) F(Y)=F(X+Y))
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{E}_{X, Y}\left[\frac{1+F(X) F(Y) F(X+Y)}{2}\right] \\
& =\frac{1}{2}+\frac{1}{2} \mathbb{E}_{X, Y}[F(X) F(Y) F(X+Y)] .
\end{aligned}
$$

That is,

$$
\begin{aligned}
1-2 \varepsilon & \leq \mathbb{E}_{X, Y}[F(X) F(Y) F(X+Y)] . \\
& =\mathbb{E}_{X}\left[F(X) \mathbb{E}_{Y}[F(X) F(X+Y)]\right]
\end{aligned}
$$

Note that over $\mathbb{F}_{2}, X+Y$ is the same as $X-Y$. This looks like a convolution.

$$
\begin{aligned}
& =\mathbb{E}_{X}[F(X) \cdot(F * F)(X)] \\
& =\langle F, F * F\rangle \\
& =\sum_{S} \widehat{F}(S) \cdot \widehat{F * F}(S) \\
& =\sum_{S} \widehat{F}(S)^{3}
\end{aligned}
$$

Parseval's identity tells us that $\sum_{S} \widehat{F}(S)^{2}=1$. So we should think about this as summing $\widehat{F}(S) \leq \widehat{F}(S)^{2}$.

$$
\begin{aligned}
& \leq \max _{S}(\widehat{F}(S)) \sum_{S \subseteq[n]} \widehat{F}(S)^{2} \\
& =\max _{S}(\widehat{F}(S)) .
\end{aligned}
$$

This means that there exists some set $S^{*}$ such that $\widehat{F}\left(S^{*}\right) \geq 1-2 \varepsilon$. In other words,

$$
\mathbb{E}_{X}\left[F(X) \chi_{S^{*}}(X)\right] \geq 1-2 \varepsilon
$$

where the left hand side is

$$
\mathbb{P}\left(F(X)=\chi_{S^{*}}(X)\right)-\mathbb{P}\left(F(X) \neq \chi_{S^{*}}(X)\right)=1-2 \mathbb{P}\left(F(X) \neq \chi_{S^{*}}(X)\right)
$$

So $\mathbb{P}\left(F(X) \neq \chi_{S^{*}}(X)\right) \leq \varepsilon$.
Remark 1.1. We have shown that if $f$ is $\varepsilon$-far from being linear, then $\mathbb{P}($ BLR accepts $)<$ $1-\varepsilon$. If we repeat this test $10 / \varepsilon$ times with independent randomness, then

$$
\mathbb{P}(\text { BLR accepts in all trials }) \leq(1-\varepsilon)^{10 / \varepsilon} \leq \exp (-10)
$$

### 1.5 Local correction of almost linear functions

This allows us to locally correct almost linear functions. Suppose $F$ is $\varepsilon$-close to $\chi_{S}$. We can define Local Correct $(F, x)$ as

1. Choose $Y \sim \mathbb{F}_{2}^{n}$.
2. Query $F$ on $Y, x+Y$.
3. Return $F(x+Y) F(Y)$.

We claim that if $F$ is $\varepsilon$ close to $\chi_{S}$, then for all $x$,

$$
\mathbb{P}_{Y}\left(\text { Local } \operatorname{Correct}(F, x)=\chi_{S}(x)\right) \geq 1-2 \varepsilon
$$

This is because with probability $\geq 1-2 \varepsilon$, both $F(Y)=\chi_{S}(Y)$ and $F(x+Y)=\chi_{S}(x+Y)$. Then

$$
F(Y) F(x+Y)=\chi_{S}(Y) \chi_{S}(x+Y)=\chi_{S}(x) .
$$

