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1 Properties of Boolean Functions and BLR Linearity Test-
ing

1.1 Recap Fourier identities for boolean functions

Last time, we proved the fundamental theorem of boolean functions.

Theorem 1.1 (Fundamental theorem of boolean functions). Ewvery boolean function f :
{0,1}™ — {0,1} can be uniquely represented as a multilinear polynomial (over R)

flze,...,zn) = Z J/”\(S)l_IJUZ
SC{1.....n} ies

This is sometimes called the Fourier representation of the function, and f(S) is the
S-Fourier coefficient of f. We also discussed an inner product on boolean functions,

(fig9) = EXN{il}” [f(X)g(X)],

and showed that the character functions xs(z) = [[;cg2: form an orthonormal basis of
the vector space of functions {£1}" — R. Finally, we showed the Plancerel, Parseval, ad
Fourier inversion formulas:

(f9)= _F(93(S), (LNHYFS2  F(S) = (f.xs).
S S

1.2 Expectation and variance formulas

Proposition 1.1.

~

Ex~gx13»[f(X)] = f(2).
Proof.
Ex g1y [f(X) 1] = Exoqt1y=[f(X) - x2]
= (f, xo)

~

= f(9). O



Proposition 1.2.

Var(f(X)) = D f(S)*.

S#o
Proof.

Var(f(X)) = Ex[f(X)?] = (Ex[f(X)])*

o~

=(f.f) - f(@)
=Y f(9)~ O

S+

We also have

o~

fH1}) = Exqznpn [f(X) - X1

= SEIAX) | X1 = 1]+ S E[-f(X) | X1 = —1]

1.3 Homomorphisms and convolutions

We will sometimes express f : {£1}" — R as f: F3 — R; the correspondence here is igven
by (—1)° < b:
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In this context, we will refer to (—1)2ies % as yg.
We call these functions characters because they are homomorphisms:

Proposition 1.3.
Xs(z +y) = xs(@)xs(y)-
Proof.
xs(o+y) = (1) Zeestn
— (_1)2165"’51’(_1)2165 Yi

= xs(z)xs(y). O

Definition 1.1. Let f,g : F§ — R. The convolution of f and g, is a function f * g :
F5 — R given by
(fx9)(x) =Ey gy [f(V)g(z = Y)].

2



Lemma 1.1.

Proof.

Fx9(8) = Exurylf * 9(X)xs(X)]
= Exrp[Evrg [f(Y)9(X = Y)] - xx]
Write Z =X —Y,s0 X =Z+Y. Since X,Y are indpendent, so are Z and Y.
=Ey~rpzorp [f(Y)9(Z2)xs(Z + Y]]
= Eyorp [f(Y)xs(Y)] Ezerz [9(Z2)xs(Z)]]

~

— F(X)-3(S). O
The reverse is true, as well, but we will not give the proof.

Proposition 1.4.

F98)=>_FT) gSaT).
T

1.4 BLR Testing

We want to check if f : Fy — [Fy is linear.

Definition 1.2. f: [} — F is linear if for all z,y,

f(z)+g(y) = f(z +y).

Equivalently, there exists an a € F3 such that for all z,

n

flz) = Z a;z; (mod 2).

i=1

If we take a = (ay,...,ay), then a; = f(e;), where ¢; = (0,...,0,1,0,...,0) is the i-th
standard basis vector. You can show equivalence by induction.

Today, we are interested in showing that robust versions of these two conditions are
equivalent:

(1’) For most pairs z,y, f(x) + f(y) = f(z +y).

(2’) There exists an a € F§ such that for most € Fy, f(z) = > 1" | a;z; (mod 2).

We can restate (2’) as the existence of S C [n] such that for most z, f(z) = > ,cq 2.



Proposition 1.5. Suppose there exists an S such that ]P)XNJFQ [f(X) =2 ics Xi] > 1. Then
Pxy(f(X+Y)=f(X)=f(Y)) >1-3e

Proof. Denote A = {x € Fy : f(x) = > ,cgxi}. If both z,y € A, then f(z +y) =

f(x) + f(y). So

Pyy(f(X+Y)# f(X)+f(Y)) <PxyP(X+Y ¢ A X ¢AY ¢A)
SP(X+Y ¢ A)+P(X ¢ A)+B(Y ¢ 4)
< 3e. O

From the perspective of property testing, we want to think of f as a black box; we
don’t know what is inside, but we can test the value of f on inputs we give it. How can we
determine if f is linear? To know for certain, we would need to check every single input.
Let us relax our condition.

Suppose either

1. f is linear

2. f is ¢ far from being linear, i.e. for all linear functions g,
Pxrp (f(X) # 9(X)) >

Here, we think of Px.pp(f(X) # g(X)) as a notion of distance (this is the Hamming
distance between f,g).
BLR proposed the following test:

1. Choose X,Y ~ F7 uniformly at random and independently.
2. Query fon X,Y, X +Y.
3. Accept if and only if f(X)+ f(Y) = f(X +Y).

If f is linear, then BLR accepts with probability 1. If f is e-far from being linear, we want
to show that P(BLR accepts) < 1 —e. We will prove the contrapositive.

Theorem 1.2. Suppose P(BLR accepts) > 1 — . Then there exists an S such that
P(f(X) = Yies Xi) = 1 —c.

Proof. Given f:F} — Fy, let F:F} — R be F(z) = (—1)/®). Then
1 — e <P(BLR accepts

)
=Pxy(f(X)+f(Y) = f(X+Y))
=Pxy(F(X)F(Y) = F(X +Y))



1+ F(X)F(Y)F(X +Y)

=Exy D)
= B FOORMFCX 4 1)

That is,

1-2e<Exy[F(X)F(Y)F(X+Y)].
=Ex[F(X)Ey[F(X)F(X +Y)]
Note that over Fy, X 4+ Y is the same as X — Y. This looks like a convolution.
=Ex[F(X) - (F* F)(X)]

= (F,FxF)

=Y F(S) - F«F(5S)
S

=Y F(s)*
S

Parseval’s identity tells us that )¢ F (8)? = 1. So we should think about this as summing
F(S) < F(S)2.

This means that there exists some set S* such that F (S*) > 1 — 2¢. In other words,
Ex[F(X)xs:(X)] 21— 2e,
where the left hand side is
P(F(X) = xs+(X)) = P(F(X) # xs+(X)) = 1 = 2P(F(X) # xs+(X)).
So P(F(X) # xs+(X)) <e. O

Remark 1.1. We have shown that if f is e-far from being linear, then P(BLR accepts) <
1 — e. If we repeat this test 10/ times with independent randomness, then

P(BLR accepts in all trials) < (1 — £)'%/¢ < exp(—10).

1.5 Local correction of almost linear functions

This allows us to locally correct almost linear functions. Suppose F' is e-close to xs. We
can define Local Correct(F, ) as



1. Choose Y ~ 3.
2. Query FonY,z+Y.

3. Return F(z +Y)F(Y).
We claim that if F' is e close to xg, then for all z,
Py (Local Correct(F,z) = xs(z)) > 1 — 2e.

This is because with probability > 1—2¢, both F(Y) = xs(Y) and F(z+Y) = xs(z+Y).
Then
FY)F(x+Y)=xs(Y)xs(z+Y) = xs(x).
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