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1 Properties of Boolean Functions and BLR Linearity Test-
ing

1.1 Recap Fourier identities for boolean functions

Last time, we proved the fundamental theorem of boolean functions.

Theorem 1.1 (Fundamental theorem of boolean functions). Every boolean function f :
{0, 1}n → {0, 1} can be uniquely represented as a multilinear polynomial (over R)

f(x1, . . . , xn) =
∑

S⊆{1....,n}

f̂(S)
∏
i∈S

xi.

This is sometimes called the Fourier representation of the function, and f̂(S) is the
S-Fourier coefficient of f . We also discussed an inner product on boolean functions,

〈f, g〉 = EX∼{±1}n [f(X)g(X)],

and showed that the character functions χS(x) =
∏

i∈S xi form an orthonormal basis of
the vector space of functions {±1}n → R. Finally, we showed the Plancerel, Parseval, ad
Fourier inversion formulas:

〈f, g〉 =
∑
S

f̂(S)ĝ(S), 〈f, f〉
∑
S

f̂(S)2, f̂(S) = 〈f, χS〉.

1.2 Expectation and variance formulas

Proposition 1.1.
EX∼{±1}n [f(X)] = f̂(∅).

Proof.

EX∼{±1}n [f(X) · 1] = EX∼{±1}n [f(X) · χ∅]

= 〈f, χ∅〉

= f̂(∅).
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Proposition 1.2.

Var(f(X)) =
∑
S 6=∅

f̂(S)2.

Proof.

Var(f(X)) = EX [f(X)2]− (EX [f(X)])2

= 〈f, f〉 − f̂(∅)2

=
∑
S 6=∅

f̂(S)2.

We also have

f̂({1}) = EX∼{±1}n [f(X) ·X1]

=
1

2
E[f(X) | X1 = 1] +

1

2
E[−f(X) | X1 = −1].

1.3 Homomorphisms and convolutions

We will sometimes express f : {±1}n → R as f̃ : Fn
2 → R; the correspondence here is igven

by (−1)b ↔ b:

f̂(x1, . . . , xn) = f((−1)x1 , . . . , (−1)xn)

=
∑
S⊆[n]

f̂(S)
∏
i∈S

(−1)xi

=
∑
S⊆[n]

f̂(S) · (−1)
∑

i∈S xi .

In this context, we will refer to (−1)
∑

i∈S xi as χS .
We call these functions characters because they are homomorphisms:

Proposition 1.3.
χS(x+ y) = χS(x)χS(y).

Proof.

χS(x+ y) = (−1)
∑

i∈S xi+yi

= (−1)
∑

i∈S xi(−1)
∑

i∈S yi

= χS(x)χS(y).

Definition 1.1. Let f, g : Fn
2 → R. The convolution of f and g, is a function f ∗ g :

Fn
2 → R given by

(f ∗ g)(x) = EY∼{±1}n [f(Y )g(x− Y )].
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Lemma 1.1.
f̂ ∗ g(S) = f̂(S) · ĝ(S).

Proof.

f̂ ∗ g(S) = EX∼Fn
2
[f ∗ g(X)χS(X)]

= EX∼Fn
2
[EY∼Fn

2
[f(Y )g(X − Y )] · χX ]

Write Z = X − Y , so X = Z + Y . Since X,Y are indpendent, so are Z and Y .

= EY∼Fn
2 ,Z∼Fn

2
[f(Y )g(Z)χS(Z + Y )]]

= EY∼Fn
2
[f(Y )χS(Y )]EZ∼Fn

2
[g(Z)χS(Z)]]

= f̂(X) · ĝ(S).

The reverse is true, as well, but we will not give the proof.

Proposition 1.4.

f̂ · g(S) =
∑
T

f̂(T ) · ĝ(S ⊕ T ).

1.4 BLR Testing

We want to check if f : Fn
2 → F2 is linear.

Definition 1.2. f : Fn
2 → F is linear if for all x, y,

f(x) + g(y) = f(x+ y).

Equivalently, there exists an a ∈ Fn
2 such that for all x,

f(x) =
n∑

i=1

aixi (mod 2).

If we take a = (a1, . . . , an), then ai = f(ei), where ei = (0, . . . , 0, 1, 0, . . . , 0) is the i-th
standard basis vector. You can show equivalence by induction.

Today, we are interested in showing that robust versions of these two conditions are
equivalent:

(1’) For most pairs x, y, f(x) + f(y) = f(x+ y).

(2’) There exists an a ∈ Fn
2 such that for most x ∈ Fn

2 , f(x) =
∑n

i=1 aixi (mod 2).

We can restate (2’) as the existence of S ⊆ [n] such that for most x, f(x) =
∑

i∈S xi.
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Proposition 1.5. Suppose there exists an S such that PX∼Fn
2
[f(X)−

∑
i∈S Xi] ≥ 1. Then

PX,Y (f(X + Y ) = f(X) = f(Y )) ≥ 1− 3ε.

Proof. Denote A = {x ∈ Fn
2 : f(x) =

∑
i∈S xi}. If both x, y ∈ A, then f(x + y) =

f(x) + f(y). So

PX,Y (f(X + Y ) 6= f(X) + f(Y )) ≤ PX,Y P(X + Y /∈ A,X /∈ A, Y /∈ A)

≤ P(X + Y /∈ A) + P(X /∈ A) + P(Y /∈ A)

≤ 3ε.

From the perspective of property testing, we want to think of f as a black box; we
don’t know what is inside, but we can test the value of f on inputs we give it. How can we
determine if f is linear? To know for certain, we would need to check every single input.
Let us relax our condition.

Suppose either

1. f is linear

2. f is ε far from being linear, i.e. for all linear functions g,

PX∼Fn
2
(f(X) 6= g(X)) ≥ ε.

Here, we think of PX∼Fn
2
(f(X) 6= g(X)) as a notion of distance (this is the Hamming

distance between f, g).
BLR proposed the following test:

1. Choose X,Y ∼ Fn
2 uniformly at random and independently.

2. Query f on X,Y,X + Y .

3. Accept if and only if f(X) + f(Y ) = f(X + Y ).

If f is linear, then BLR accepts with probability 1. If f is ε-far from being linear, we want
to show that P(BLR accepts) < 1− ε. We will prove the contrapositive.

Theorem 1.2. Suppose P(BLR accepts) ≥ 1 − ε. Then there exists an S such that
P(f(X) =

∑
i∈S Xi) ≥ 1− ε.

Proof. Given f : Fn
2 → F2, let F : Fn

2 → R be F (x) = (−1)f(x). Then

1− ε ≤ P(BLR accepts)

= PX,Y (f(X) + f(Y ) = f(X + Y ))

= PX,Y (F (X)F (Y ) = F (X + Y ))
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= EX,Y

[
1 + F (X)F (Y )F (X + Y )

2

]
=

1

2
+

1

2
EX,Y [F (X)F (Y )F (X + Y )].

That is,

1− 2ε ≤ EX,Y [F (X)F (Y )F (X + Y )].

= EX [F (X)EY [F (X)F (X + Y )]]

Note that over F2, X + Y is the same as X − Y . This looks like a convolution.

= EX [F (X) · (F ∗ F )(X)]

= 〈F, F ∗ F 〉

=
∑
S

F̂ (S) · F̂ ∗ F (S)

=
∑
S

F̂ (S)3

Parseval’s identity tells us that
∑

S F̂ (S)2 = 1. So we should think about this as summing

F̂ (S) ≤ F̂ (S)2.

≤ max
S

(F̂ (S))
∑
S⊆[n]

F̂ (S)2

= max
S

(F̂ (S)).

This means that there exists some set S∗ such that F̂ (S∗) ≥ 1− 2ε. In other words,

EX [F (X)χS∗(X)] ≥ 1− 2ε,

where the left hand side is

P(F (X) = χS∗(X))− P(F (X) 6= χS∗(X)) = 1− 2P(F (X) 6= χS∗(X)).

So P(F (X) 6= χS∗(X)) ≤ ε.

Remark 1.1. We have shown that if f is ε-far from being linear, then P(BLR accepts) <
1− ε. If we repeat this test 10/ε times with independent randomness, then

P(BLR accepts in all trials) ≤ (1− ε)10/ε ≤ exp(−10).

1.5 Local correction of almost linear functions

This allows us to locally correct almost linear functions. Suppose F is ε-close to χS . We
can define Local Correct(F, x) as
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1. Choose Y ∼ Fn
2 .

2. Query F on Y, x+ Y .

3. Return F (x+ Y )F (Y ).

We claim that if F is ε close to χS , then for all x,

PY (Local Correct(F, x) = χS(x)) ≥ 1− 2ε.

This is because with probability ≥ 1−2ε, both F (Y ) = χS(Y ) and F (x+Y ) = χS(x+Y ).
Then

F (Y )F (x+ Y ) = χS(Y )χS(x+ Y ) = χS(x).
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